{"id":987,"date":"2021-11-27T20:06:36","date_gmt":"2021-11-27T19:06:36","guid":{"rendered":"https:\/\/ateneoescurialense.org\/senderismo\/?page_id=987"},"modified":"2021-12-05T19:51:05","modified_gmt":"2021-12-05T18:51:05","slug":"las-zorreras-a-el-escorial","status":"publish","type":"page","link":"https:\/\/ateneoescurialense.org\/senderismo\/las-zorreras-a-el-escorial\/","title":{"rendered":"Las Zorreras a El Escorial"},"content":{"rendered":"
[et_pb_section fb_built=\u00bb1″ _builder_version=\u00bb4.9.4″ background_color=\u00bb#e2e8ce\u00bb use_background_color_gradient=\u00bbon\u00bb background_color_gradient_start=\u00bb#688987″ background_color_gradient_end=\u00bb#35ffff\u00bb global_colors_info=\u00bb{}\u00bb][et_pb_row _builder_version=\u00bb4.4.9″ global_colors_info=\u00bb{}\u00bb][et_pb_column type=\u00bb4_4″ _builder_version=\u00bb4.4.9″ global_colors_info=\u00bb{}\u00bb][et_pb_text admin_label=\u00bbT\u00edtulo de la ruta\u00bb _builder_version=\u00bb4.13.1″ border_color_all=\u00bbrgba(0,0,0,0)\u00bb global_colors_info=\u00bb{}\u00bb]<\/p>\n
[\/et_pb_text][et_pb_blurb use_icon=\u00bbon\u00bb font_icon=\u00bb;||divi||400″ icon_color=\u00bb#B7321A\u00bb icon_placement=\u00bbleft\u00bb image_icon_width=\u00bb25px\u00bb admin_label=\u00bbFecha\/hora\u00bb _builder_version=\u00bb4.14.2″ _module_preset=\u00bbdefault\u00bb body_font_size=\u00bb16px\u00bb hover_enabled=\u00bb0″ icon_font_size=\u00bb25px\u00bb global_colors_info=\u00bb{}\u00bb sticky_enabled=\u00bb0″]<\/p>\n
Domingo 12 de diciembre 2021 a las 9:30h<\/p>\n
[\/et_pb_blurb][et_pb_blurb use_icon=\u00bbon\u00bb font_icon=\u00bb||divi||400″ icon_color=\u00bb#B7321A\u00bb icon_placement=\u00bbleft\u00bb image_icon_width=\u00bb25px\u00bb admin_label=\u00bbLugar de salida\u00bb _builder_version=\u00bb4.13.1″ _module_preset=\u00bbdefault\u00bb body_font_size=\u00bb16px\u00bb icon_font_size=\u00bb25px\u00bb global_colors_info=\u00bb{}\u00bb]<\/p>\n
Punto de encuentro y salida: parking de la estaci\u00f3n de RENFE de El Escorial<\/p>\n
[\/et_pb_blurb][et_pb_blurb use_icon=\u00bbon\u00bb font_icon=\u00bb||divi||400″ icon_color=\u00bb#B7321A\u00bb icon_placement=\u00bbleft\u00bb image_icon_width=\u00bb25px\u00bb admin_label=\u00bbCoordinador\u00bb _builder_version=\u00bb4.13.0″ _module_preset=\u00bbdefault\u00bb icon_font_size=\u00bb25px\u00bb global_colors_info=\u00bb{}\u00bb]<\/p>\n
[\/et_pb_blurb][\/et_pb_column][\/et_pb_row][et_pb_row _builder_version=\u00bb4.4.9″ background_color=\u00bbrgba(0,0,0,0)\u00bb background_size=\u00bbinitial\u00bb background_position=\u00bbtop_left\u00bb background_repeat=\u00bbrepeat\u00bb global_colors_info=\u00bb{}\u00bb][et_pb_column type=\u00bb4_4″ _builder_version=\u00bb3.25″ custom_padding=\u00bb|||\u00bb global_colors_info=\u00bb{}\u00bb custom_padding__hover=\u00bb|||\u00bb][et_pb_text admin_label=\u00bbDescripci\u00f3n de la ruta\u00bb _builder_version=\u00bb4.13.1″ text_font_size=\u00bb16px\u00bb background_size=\u00bbinitial\u00bb background_position=\u00bbtop_left\u00bb background_repeat=\u00bbrepeat\u00bb global_colors_info=\u00bb{}\u00bb]<\/p>\n
Distancia: 9 km<\/p>\n
Nivel de dificultad: f\u00e1cil excepto por la distancia<\/p>\n
Lugar de Encuentro: Parking de la Estaci\u00f3n de RENFE en El Escorial<\/p>\n
Vestimenta: c\u00f3moda y adecuada al fr\u00edo<\/p>\n
Calzado: c\u00f3modo de senderismo<\/p>\n
Comentario: Volvemos a realizar una ruta cuya caracter\u00edstica principal es la nula dificultad si exceptuamos la distancia. Saldremos desde el parking de l estaci\u00f3n de RENFE de El Escorial, para acercarnos a Las Zorreras, desde donde iniciaremos el paseo que nos conducir\u00e1 pasando por el Guijo, hasta El Escorial, atravesando las denominadas \u201cSiete Puertas<\/em>\u201d<\/p>\n [\/et_pb_text][et_pb_text admin_label=\u00bbDisclaimer\u00bb _builder_version=\u00bb4.9.2″ text_font_size=\u00bb16px\u00bb background_size=\u00bbinitial\u00bb background_position=\u00bbtop_left\u00bb background_repeat=\u00bbrepeat\u00bb border_radii=\u00bbon|11px|11px|11px|11px\u00bb border_width_all=\u00bb2px\u00bb global_colors_info=\u00bb{}\u00bb]<\/p>\n